Efficient Clustering of Short Messages into General Domains
نویسندگان
چکیده
The ever increasing activity in social networks is mainly manifested by a growing stream of status updating or microblogging. The massive stream of updates emphasizes the need for accurate and efficient clustering of short messages on a large scale. Applying traditional clustering techniques is both inaccurate and inefficient due to sparseness. This paper presents an accurate and efficient algorithm for clustering Twitter tweets. We break the clustering task into two distinctive tasks/stages: (1) batch clustering of user annotated data, and (2) online clustering of a stream of tweets. In the first stage we rely on the habit of ‘tagging’, common in social media streams (e.g. hashtags), thus the algorithm can bootstrap on the tags for clustering of a large pool of hashtagged tweets. The stable clusters achieved in the first stage lend themselves for online clustering of a stream of (mostly) tagless messages. We evaluate our results against gold-standard classification and validate the results by employing multiple clustering evaluation measures (information theoretic, paired, F and greedy). We compare our algorithm to a number of other clustering algorithms and various types of feature sets. Results show that the algorithm presented is both accurate and efficient and can be easily used for large scale clustering of sparse messages as the heavy lifting is achieved on a sublinear number of documents.
منابع مشابه
Using Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملMLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کاملبررسی تاثیر سرویس پیام کوتاه تلفن همراه (SMS) بر خودمراقبتی دیابت
Background: The objective of the current study is to assess the effectiveness of Mobile Short Message Service (SMS) intervention on education of basic self-care skills in patients with type 2 diabetes. Moreover, we aimed to determine whether delivering individually-tailored educational messages can be more effective than general educational messages. Methods: A total of 150 patients with dia...
متن کاملCombination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013